Math 214 - Quiz 2

American University of Beirut - Fall 2018 - Dr. Richard Aoun

Exercise 1. Let (X, d) be a metric space and

$$\delta := \frac{d}{1+d}.$$

- 1. Show that δ is a metric on X. Suggestion: You can search for nice properties of the function $f(x) = \frac{x}{1+x}$, x > 0.
- 2. Give a sufficient and necessary condition on (X, d) for δ and d to be strongly equivalent (i.e. Lipschitz equivalent).
- 3. Show that δ and d induce the same topology on X.

Exercise 2. Recall that a map $f: X \longrightarrow X$ from a set X to itself is said to have a fixed point $x_0 \in X$ if $f(x_0) = x_0$.

- 1. Let $f : [0,1] \longrightarrow [0,1]$ be a continuous function. Explain why the sets $\{t \in [0,1]; f(t) < t\}$ and $\{t \in [0,1]; f(t) > t\}$ are both open in [0,1]. Deduce that f has a fixed point $x \in [0,1]$. We recall that [0,1] is connected, i.e. that it cannot be written as disjoint union of non-empty open subsets of [0,1].
- 2. Construct a continuous function $g: \mathbf{S}^1 \longrightarrow \mathbf{S}^1$ that does not admit a fixed point. Show rigorously but concisely your claims.
- 3. Deduce from Questions 1 and 2 that there is no homeomorphism between S^1 and [0, 1].

Exercise 3. (McShane-Whitney extension theorem)

Let (X, d) be a metric space and A any non-empty subset of X. Let C > 0 be a positive constant and $f: A \longrightarrow \mathbb{R}$ a C-Lipschitz map (when A is endowed with the restricted metric and \mathbb{R} with the Euclidean metric).

1. Let $f^+, f^-: X \longrightarrow \mathbb{R}$ defined for every $x \in X$ by:

$$f^+(x) := \inf_{a \in A} \{ f(a) + Cd(a, x) \} \quad , \quad f^-(x) := \sup_{a \in A} \{ f(a) - Cd(a, x) \}$$

Show that f^+ and f^- are C-Lipschitz functions on X that extend f (i.e. $f_{|_A}^+ = f$ and $f_{|_A}^- = f$). Do the proof for one of the them and the other very quickly.

2. Show that the functions f^+ and f^- defined above are extremal in the following sense: any other C-Lipschitz extension g of f on X must satisfy:

$$\forall x \in X, \ f^-(x) \le g(x) \le f^+(x).$$

3. Assume A to be dense in X.

- (a) Show using the previous question that there exists a unique C-Lipschitz extension of f on X.
- (b) Which general fact can be also used to recover the previous result? **State it without a proof**.
- 4. Let now $n \in \mathbb{N}^*$, C > 0 and $g: A \longrightarrow \mathbb{R}^n$ a C-Lipschitz map with \mathbb{R}^n endowed with the Euclidean metric d_2 . Show that there exists a \sqrt{nC} -Lipschitz extension of g on all of X.
- 5. Example: Let $X = \mathbb{R}$, $A = \{-1, 0, 1\}$, f(-1) = f(0) = 0, f(1) = 1. Explicit the functions f^+ and f^- in this case (with C being the Lipschitz constant of f).

Exercise 4. Let $n \in \mathbb{N}^*$.

- 1. (a) Show that the open unit ball in (\mathbb{R}^n, d_2) is homeomorphic to \mathbb{R}^n .
 - (b) Deduce that any open ball in (Rⁿ, d₂) (of any center and any radius) is homeomorphic to Rⁿ.
 - (c) Give, without any proof, an open subset of \mathbb{R}^n which is not homeomorphic to \mathbb{R}^n .
- 2. A topological space X is said to be a locally n-Euclidean space if, for every $x \in X$, there exists an open neighborhood U of x in X such that U (with its subspace topology) is homeomorphic to \mathbb{R}^n .
 - (a) Show that X is locally n-Euclidean, if and only if, for every $x \in X$ there exists an open neighborhood O of x such that O is homeomorphic to an open subset of \mathbb{R}^n .
 - (b) Let X be a locally n-Euclidean space and U an open subset of X. Show that U is also a locally n-Euclidean space.
 - (c) Let X and Y be respectively n and m-locally Euclidean. Show that $X \times Y$ is a locally n + m-Euclidean space.
 - (d) Deduce that the topological torus $\mathbf{S}^1 \times \mathbf{S}^1$ is a locally 2-Euclidean space.
 - (e) Show that any locally *n*-Euclidean topological space must be T_1 (i.e. every singleton is closed).
- 3. Here we present an example of a locally 1-space which is not Hausdorff. This space is called *the line with two origins*.

Let X be the union of $\mathbb{R} \setminus \{0\}$ and the two-point set $\{p,q\}$ (with p,q abstract points not real numbers). The line with two origins is, by definition, the set X endowed with the topology \mathcal{T} having as basis the collection \mathcal{B} of all open intervals of \mathbb{R} that do not contain 0, along with all the sets of the form $(-a,0) \cup \{p\} \cup (0,a)$ and all sets of the form $(-a,0) \cup \{q\} \cup (0,a)$, for a > 0.

- (a) Check quickly that \mathcal{B} is indeed a topological basis.
- (b) Prove that the space $X \setminus \{p\}$ (with its subspace topology) is homeomorphic to \mathbb{R} (with its Euclidean topology). Similarly, one can show that $X \setminus \{q\}$ is homeomorphic to \mathbb{R} (no need to do it).
- (c) Prove that X is a locally 1-space.
- (d) Prove that X is not Hausdorff. Is it metrizable?
- (e) (Vague questions, no need to be very rigorous, Bonus)
 - i. The line with two origins can be more naturally introduced using the quotient topology (which will be studied soon), i.e. by "gluing together" certain points of a given topological space. Can you guess how?
 - ii. It is easy to check that the line with two origins is second-countable. Can you construct a locally Euclidean space which is not second-countable?